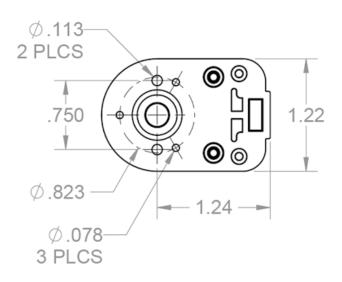
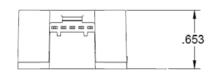
ENC-A5SN Single-Ended Encoder without Index Channel

- 32 to 1,250 Cycles Per Revolution (CPR)
- Tracks 0 to 300,000 Cycles Per Second
- Powered From a Single +5VDC Power Supply
- Accepts +/- 0.010" Axial Shaft Play
- 2-Channel Quadrature TTL Squarewave Outputs
- Operating Temperature of -40° to +100° C
- RoHS Compliant and REACH Certified

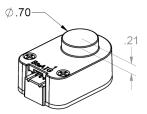

The ENC-A5SN is a single-ended, transmissive optical encoder module designed to detect the rotary position with a code wheel. The ENC-A5SN requires a minimum shaft length of .445" and maximum shaft length of .570", and can be attached to the end of any shaft size ranging from .079" to .394" in diameter to provide digital feedback information. This single-ended encoder consists of a LED source lens and a monolithic detector IC enclosed in a small mance and tolerances over traditional aperture mask type encoders. The ENC-A5SN series provides digital quadrature squarewave outputs on all resolutions and are capable of sinking or sourcing 8 mA each. These encoders are powered from a single +5VDC power supply.

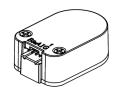
L010732



DEFAULT OPTION:

2.04 1.223


Note: Dimensions are in inches


E-Option:

H-Option:

Default Option:

Note: Dimensions are in inches

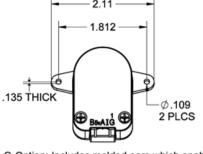
Cover Options:	Description
E - Option	E-Option provides a cylindrical extension cover for larger shafts. The required shaft length is .445" to .750". Note: E-option + R-Option the required shaft length is .570" to .875".
H - Option	Shafts 2mm to 1/4", a .295" diameter hole is supplied. Shafts 5/16" to 10mm, a .438" diameter hole is supplied. Required shaft length > 0.445" Note: H-Option + R-Option the required shaft length is > .570"
Default Option	The required length is .445" to .570" Note: Default Option + R-Option the required shaft length is .570" to .695"

3-OPTION:

3-Option: Makes all five hole diameters .125"

A-OPTION:

A-Option: Adds a .497" diameter alignment shoulder designed to slip into a .500" diameter recess in the mounting surface centered around the shaft.

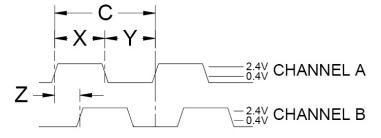

R-OPTION: Ø.113 Ø1.812 \emptyset 2.062 309

-.125 THICK G10

R-Option: Adapter is an 1/8" thick fiberglass adapter which is pre-mounted to the base of the encoder. It allows the encoder to rotate +/- 15 degrees.

*This option adds 1/8" to the required shaft length.

2.11 1.812


G-OPTION:

G-Option: Includes molded ears which enables it to be mounted to a 1.812" diameter bolt circle. Mounting holes are designed to fit 4-40 screws. Will work with shaft lengths of .445" to .570" and does not add to the required shaft length.

Note: All dimensions are in inches

(Note: Base Mounting Screws are NOT included. #2-56 or #4-40 screws can be used to mount the base to your mounting surface.)

SINGLE-END ENCODER TIMING DIAGRAMS

ROTATION: CW - B LEADS A, CCW - A LEADS B

SINGLE-ENDED ENCODER PINOUT TOP OF ENCODER FACING PLUG

Pin#	Function	
1	Ground	
2	No Connection	
3	Channel A	
4	+5VDC Input	
5	Channel B	

Terminology	Description
CPR(N):	The Number of Cycles Per Revolution
One Shaft Rotation:	360 mechanical degrees, N cycles
One Electrical Degree (°e):	1/360th of one cycle
One Cycle (C):	360 electrical degrees (°e). Each cycle can be decoded into 1 or 4 codes, referred to as X1 or X4 resolution multiplication
Symmetry:	A measure of the relationship between (X) and (Y) in electrical degrees, nominally 180 °e
Quadrature (Z):	The phase lag or lead between channels A and B in electrical degrees, nominally 90 °e
Index (CH I):	The Index Output goes high once per revolution, coincident with the low states of channels A and B, nominally 1/4 of one cycle (90°e)

Recommended Operating Conditions	Min	Max	Units
Temperature (CPR < 2000)	-40	100	°C
Temperature (CPR ≥ 2000)	-25	100	°C
Load Capacitance	-	100	pF
Count Frequency (CPR ≤ 1250)	-	300	kHz
Count Frequency (CPR 2000-2500)	-	360	kHz
Count Frequency (CPR 4000+)	-	720	kHz

Parameter	Max	Units
Vibration (5 to 2kHz)	20	g
Shaft Axial Play	+/- 0.01	in.
Shaft Eccentricity Plus Radial Play	0.004	in.
Acceleration	250,000	rad/sec ²

Parameter	Min	Тур	Max	Units
Supply Voltage	4.5	5.0	5.5	Volts
Supply Current CPR < 500, no load CPR ≥ 500 and < 2000, no load CPR ≥ 2000, no load	-	27 50 72	33 62 85	mA
Output Low $I_{OL} = 8\text{mA max (CPR} < 2000)$ $I_{OL} = 5\text{mA max (CPR} \ge 2000)$ no load (CPR ≥ 2000)		- - 0.25	0.5 0.5 -	Volts
Output High* $I_{OL} = -8\text{mA max (CPR} < 2000)$ $I_{OL} = -5\text{mA max (CPR} \ge 2000)$ no load (CPR < 2000) no load (CPR ≥ 2000)	2.0 2.0 -	- 4.8 3.5		Volts
Output Current Per Channel (CPR < 2000)	-8.0	-	8.0	mA
Output Current Per Channel (CPR ≥ 2000)	-5.0	-	5.0	mA
Output Rise Time (CPR < 2000)	-	110	-	nS
Output Rise Time (CPR ≥ 2000), ± 5mA load	-	50	-	
Output Fall Time (CPR < 2000)	-	110	-	
Output Fall Time (CPR ≥ 2000), ± 5mA load	-	50	-	nS
* Unloaded high level output voltage is 4.80V typically, 4.2V minimum				

Speed Calculation		Units
CPR ≤ 1250	18x10 ⁶ / CPR	RPM
CPR 2000-2500	21.6x10 ⁶ / CPR	RPM
CPR 4000+	43.2x10 ⁶ / CPR	RPM

^{*60,000} RPM is the maximum RPM due to mechanical limitations.

Cables:

The following cables are compatible with Anaheim Automation's A5SN series encoder. Select a cable length from the table below:

Cable Part Number	Length
ENC-CBL-AA5939	1 ft.
ENC-CBL-AA5939-5	5 ft.
ENC-CBL-AA5939-10	10 ft.

NOTE: For pricing and other information on cables and centering tools, please visit Accessories on our website.

Centering Tools:

Centering tools are optional, but recommended for a more precise installation.

ENC-CTOOL - 250

Bore Size		
079=2mm	236=6mm	
118=3mm	250=1/4"	
125=1/8"	276=7mm	
157=4mm	313=5/15"	
188=3/16"	375=3/8"	
197=5mm	394=10mm	